Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability
More about Open Access at the CrickAuthors list
Marit E Geijer Di Zhou Kathiresan Selvam Barbara Steurer Chirantani Mukherjee Bastiaan Evers Simona Cugusi Marvin van Toorn Melanie van der Woude Roel C Janssens Yannick P Kok Wenzhi Gong Anja Raams Calvin SY Lo Joyce HG Lebbink Bart Geverts Dalton A Plummer Karel Bezstarosti Arjan F Theil Richard Mitter Adriaan B Houtsmuller Wim Vermeulen Jeroen AA Demmers Shisheng Li Marcel ATM van Vugt Hannes Lans René Bernards Jesper Svejstrup Arnab Ray Chaudhuri John J Wyrick Jurgen A Marteijn Toggle all authors (31)
Abstract
Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms.
Journal details
Journal Nature Cell Biology
Volume 23
Issue number 6
Pages 608-619
Available online
Publication date
Full text links
Publisher website (DOI) 10.1038/s41556-021-00692-z
Europe PubMed Central 34108662
Pubmed 34108662