IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma
More about Open Access at the CrickAuthors list
Satoshi Kofuji Akiyoshi Hirayama Alexander Otto Eberhardt Risa Kawaguchi Yuki Sugiura Oltea Sampetrean Yoshiki Ikeda Mikako Warren Naoya Sakamoto Shuji Kitahara Hirofumi Yoshino Daisuke Yamashita Kazutaka Sumita Kara Wolfe Lisa Lange Satsuki Ikeda Hiroko Shimada Noriaki Minami Akshiv Malhotra Shin Morioka Yuki Ban Maya Asano Victoria L Flanary Annmarie Ramkissoon Lionel ML Chow Juri Kiyokawa Tomoyuki Mashimo Greg Lucey Sergey Mareninov Tatsuya Ozawa Nobuyuki Onishi Koichi Okumura Jumpei Terakawa Takiko Daikoku Trisha Wise-Draper Nazanin Majd Kaori Kofuji Mika Sasaki Masaru Mori Yonehiro Kanemura Eric P Smith Dimitrios Anastasiou Hiroaki Wakimoto Eric C Holland William H Yong Craig Horbinski Ichiro Nakano Ralph J DeBerardinis Robert M Bachoo Paul S Mischel Wataru Yasui Makoto Suematsu Hideyuki Saya Tomoyoshi Soga Ingrid Grummt Holger Bierhoff Atsuo T Sasaki Toggle all authors (57)
Abstract
In many cancers, high proliferation rates correlate with elevation of rRNA and tRNA levels, and nucleolar hypertrophy. However, the underlying mechanisms linking increased nucleolar transcription and tumorigenesis are only minimally understood. Here we show that IMP dehydrogenase-2 (IMPDH2), the rate-limiting enzyme for de novo guanine nucleotide biosynthesis, is overexpressed in the highly lethal brain cancer glioblastoma. This leads to increased rRNA and tRNA synthesis, stabilization of the nucleolar GTP-binding protein nucleostemin, and enlarged, malformed nucleoli. Pharmacological or genetic inactivation of IMPDH2 in glioblastoma reverses these effects and inhibits cell proliferation, whereas untransformed glia cells are unaffected by similar IMPDH2 perturbations. Impairment of IMPDH2 activity triggers nucleolar stress and growth arrest of glioblastoma cells even in the absence of functional p53. Our results reveal that upregulation of IMPDH2 is a prerequisite for the occurance of aberrant nucleolar function and increased anabolic processes in glioblastoma, which constitutes a primary event in gliomagenesis.
Journal details
Journal Nature Cell Biology
Volume 21
Issue number 8
Pages 1003-1014
Available online
Publication date
Full text links
Publisher website (DOI) 10.1038/s41556-019-0363-9
Figshare View on figshare
Europe PubMed Central 31371825
Pubmed 31371825
Keywords
Related topics
Type of publication