Proof-of-concept study demonstrating the pathogenicity of affinity-purified IgG antibodies directed to domain I of β2-glycoprotein I in a mouse model of anti-phospholipid antibody-induced thrombosis

More about Open Access at the Crick


Objective. IgG aPL against domain I of beta(2)-glycoprotein I (beta(2)GPI) [ anti-DI (aDI)] is associated with the pathogenesis of APS, an autoimmune disease defined by thrombosis and pregnancy morbidity. To date, however, no study has demonstrated direct pathogenicity of IgG aDI in vivo. In this proof-of-concept study, we designed a novel system to affinity purify polyclonal aDI aPL in order to assess its prothrombotic ability in a well-characterized mouse microcirculation model for APS. Methods. Two polyclonal IgG fractions were isolated from serum of a patient with APS, both with high aPL activity but differing in aDI activity (aDI-rich and aDI-poor). These IgG fractions were tested for their pathogenic ability in an in vivo mouse model of thrombosis. Male CD1 mice were injected intraperitoneally with either aDI-rich or aDI-poor IgG; as a control, IgG isolated from healthy serum was used. A pinch injury was applied to the right femoral vein and thrombus dynamics and tissue factor activity in isolated tissue were evaluated. Results. Both aDI-rich and aDI-poor IgG retained aCL and anti-beta(2)GPI activity, while only aDI-rich IgG displayed high aDI activity, as defined by our in-house cut-offs for positivity in each assay. aDI-rich IgG induced significantly larger thrombi in vivo compared with aDI-poor IgG (P < 0.0001). Similarly, aDI-rich IgG significantly enhanced the procoagulant activity of carotid artery endothelium and peritoneal macrophages isolated from experimental animals (P < 0.01). Conclusion. These data directly demonstrate that the ability to cause thrombosis in vivo is concentrated in the aDI fraction of aPL.

Journal details

Journal Rheumatology
Volume 54
Issue number 4
Pages 722-727
Available online
Publication date